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J. Phys.: Condens. Matter 4 (1992) 2375-2387. Printed in the UK 

Amorphization of a substitutional binary alloy: a computer 
‘experiment’ 

Lydkric Bocquet, Jean-Pierre Hansen, Thieny Biben and Paul Maddent 
Laboratoire de Physique. Unit6 de Recherche Asmci6e 1325 du CNRS. Ecole Normale 
SupCricure de Lyon, 69364 Lyon Wex 07, Flance 

Received 13 December 1991 

AbslmcL A novel mute towards amorphizalion of an initially crystalline stmcture is 
explored by molecular dynamics simulations of a two-dimensional model of ‘softdisk‘ 
atoms. Amorphization i s  driven by a slow inereare in lhe diametem of half the atoms, 
chosen at random on an initially monodisperse triangular lattice, and a simultaneous 
reduction in size of the remaining atoms , keeping constant a suitably chosen mean 
diameter as well as the temperature. The crystal is found to undergo a discontinuous 
transition towards an amorphous solid at a critical size ratio of the two species. The 
transition is signalled by jumps of a number of order parameten characterizing the loss 
of long-range positional and bond-orienlational order, and by hysteresis reminiscent of 
a hrsi-order phase transition. At higher temperatures. a similar adiabalic change in the 
sue ratio leads to melting. 

1. Introduction 

Many experimental procedures have been devised to generate metastable amorphous 
structures, starting from one of the thermodynamically stable phases (vapour, melt or 
crystal) of the same material or its chemical components. One of the most common 
is based on rapid cooling (‘quenching’) of the melt. Glasses are routinely obtained 
by this route from network-forming materials like silica melts. To obtain amorphous 
metallic compounds from molten alloys, much faster cooling rates have to be applied 
to bypass crystal nucleation. In the competition between crystallization and glass 
formation, the latter is favoured by size mismatch of the components, since large 
differences in atomic sizes are known to drive phase separation on freezing [1,2]. This 
requires interdiffusion of the atomic species, which slows down the crystal nucleation 
rate considerably at IOW temperatures, particularly under eutectic conditions. 

The transition from supercooled liquid to glass in simple models of binary alloys 
has recently been studied by several groups via molecular dynamics (MD) simulations 
[MI. In these computer ‘experiments’, the glass was obtained by rapid cooling or 
compression of the liquid mixture. We propose an alternative numerical Gedanken- 
experiment which leads to an amorphous phase, starting from an initially crystalline 
solid, made up of a single species of identical atoms. 

t Permanent address: Physical Chemistry Laboratory, Univenily of Oxford, South Park Road, 
OX1 3Q2, UK. 
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The key idea is to induce. the size asymmetry gradually, by 'swelling' a randomly 
chosen subset of the originally monodisperse sample, while simultaneously 'shrinking' 
the remaining atoms, keeping constant a suitably defined mean atomic diameter as 
well as the total volume of the sample and the temperature. The whole process is 
carried out suficiently slowly, so that at each instant the system may be assumed to be 
in thermodynamic equilibrium, and the transformation may be regarded as reversible. 
In this way, a substitutionally disordered crystalline alloy is generated continuously, 
and the reversibility of the path provides a way of computing the free energy of the 
disordered binary alloy, for each size ratio, by thermodynamic integration [7]. In this 
paper, we show that, beyond a critical size ratio, the crystalline alloy becomes unstable 
and undergoes a discontinuous transition to an amorphous binary alloy, signalled 
by Several diagnostics characterizing the loss of long-range order. This irreversible 
transition between crystalline and amorphous states exhibits hysteresis, as observed 
in usual first-order phase transitions. The present investigation is restricted to a 
two-dimensional model, for reasons of simplicity and easier visualization of particle 
displacements, but we believe that qualitatively similar behaviour would be observed 
in three dimensions. 

2. The model 

We consider the two-dimensional, binary 'soft-disk' model, made up of two atomic 
species, of diameters al and U?, interacting via the  purely inverse 12 pair potential, 

where c defines the energy scale and the diameters are assumed to be additive, 

(2) 
1 

U * #  = z (a, + u.p) 1 < a , P  < 2. 

For a given size ratio, X = aI / a 2  (< l),  the excess equilibrium propertics depend 
only on the concentration, I, = N , / N  (where N = NI + N, is the total number of 
atoms) and on the dimensionless coupling constant, 

y = p'T'-k (3) 

where p' = p a 2  = N o 2 / S  and T' = k B T / c  denote the reduced number density 
and temperature, and S is the total area of the system; the effective diameter a will 
be defined below. 

1, 
and a reduced pressure P' = P o 2 / k g T  CI 14.5 181. Recent extensive molecular 
dynamics (MD) simulations have confirmed the first-order nature of the transition [9], 
rather than a continuous transition involving dislocation unbinding in the crystal and 
an intermediate hexatic phase [lo]. 

As stated in the introduction, we have carried out extensive MD, as well as Monte 
Carlo simulations of the binary alloy obtained by gradually decreasing the size ratio 
from X = 1. 73 that purpose. the diameter a? of half the particles, chosen at random 
in the original monodisperse crystal, was gradually increased above the initial common 
value U ,  while at the same time the diameter u1 of the remaining NE atoms was 

The monodisperse (A  = 1) soft-sphere fluid undergoes crystallization at y 
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reduced; all simulations were thus made for an equimolar alloy (xl = z2 = 1/2). The 
simultaneous particle ‘swelling’ and ‘shrinking’ was carried out in such a way that the 
effective diameter, appropriate for a one component (‘conformal solution’) description 
of the binary mixture was held fixed, and equal to the initial monodisperse value U. 

Within conformal solution theoly [ll], the resulting constraint on the diameters of 
the two species reads: 

which uniquely determines u1 and u2 for any choice of the size ratio X = u1/v2. For 
a given initial value v, the pair potential (1) may now be regarded as a continuous 
function of A, & ( T ) .  Similarly, for fixed temperature T, area S and concentration 
xI, the partition function is also a continuous function of the size ratio, i.e. Q N ( X ) .  
The excess free energy of the mixture (or alloy) is then related to chat of the initial 
monodisperse system by straightforward integration [7,11,12], 

where FZ = F,( X = 1) is the free energy of the monodisperse ‘reference system’, 
and V , ’  denotes the total potential energy of the mixture for a given value of the 
size ratio: 

The sum in (6) is taken over all particles species (1 < cr,p 6 2) and over all pairs 
of atoms ( i , j )  in the mixture, at mutual distances rij .  The statistical average in 
the integrand of (5) is taken over an ensemble of mixtures with potential energy V?. 
Equation (5) will yield the free energy of the mixture as long as the path parametrized 
by X is reversible. Note that, for convenience, the masses of the two species are held 
constant during the transformation. 

, where m is the 
particle mass, while a = ( ~ p ) - ’ / ’  is the radius of a disk containing on average one 
arom. AI1 simulations were carried out for a fixed value of the density, while the 
temperature was held constant by the use of a Hoover thermostat [13]; consequently, 
all results reported below correspond to fixed values of y. The gradual reduction 
of the size ratio X was implemented very gently by a succession of small jumps, 
AX E separated by re-equilibration periods lasting IO2 time steps (of length 
Ai  2 5.10-3~) during which X was held constant. Thus, in a typical run lasting 
lo4 time steps, X was reduced by a few parts in a thousand; each ‘reduction’ run 
was followed by a ‘production’ run , during which X was held constant, and statistical 
averages were taken over at least lo4 time steps. All simulations reported here 
were made for samples of N=108 atoms in a hexagonal cell, with periodic boundary 
conditions. A cross-check of the data reported below was provided by a number 
of MC simulations which we performed for identical thermodynamic states and size 
ratios. TNO series of simulations were carried out; the first series was for y = 1.64, 
well inside the crystal phase of the monodisperse system, while the second was for 
7 = 1.05, close to the melting point of the monodisperse crystal. 

1 112 The natural time unit in the MD simulations is 7 = ( € / m a - )  
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3. Diagnostics 

At the monodisperse starting points ( A  = l) ,  the soft-disk system forms a triangular 
crystal, since X was chosen to be larger than its value at freezing ( A  zz 1). However, 
t he  binary crystalline alloy is expected to become unstable beyond a critical size asym- 
metry. In order to characterize the expected loss of long-range order, we monitored 
a certain number of ‘diagnostics’ while X was gradually reduced. 

Tb estimate the degree of translational order, we calculated the mean value of 
the modulus of 

.ri 
po = - x e x p { i G .  r , )  

2 = 1  
N (7) 

where r ;  denotes the instantaneous position of atom i, while G is a reciprocal lattice 
vector. (Ipcl) = 1 for a perfect crystal, where each atom occupies a lattice site, 
whereas this average is expected to be of the order of 1 / 0  for a completely 
disordered structure. Another measure of the loss of crystalline order is provided by 

where T,” is the triangular lattice position of the i th  atom. This quantity, which 
vanishes identically for a perfect crystal, should not be confused with the vibrational 
mean-square displacement, 

Positional correlations are measured by computing the usual pair-distribution function 
g(r) defined by Ill]: 

P d r )  = E ( /XT‘) /XT’  f p))dT’ - (10) ’ I  
where p ( ~ ‘ )  denotes the microscopic density, 

N 

p ( r ’ )  = c 6 ( r ’ - r ; ) ,  
i = 1  

In the (presumably) isotropic amorphous phase, g ( r )  depends only on the relative 
distance T = lrl, while in the crystalline solid, g ( r )  was averaged over orientations 

Bond-orientational order is conveniently characterized by the Nelson-Halperin 
Of T .  

order parameter [IO], 
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On the right-hand side of (12), B, j  is the bond angle of an ( i , j )  pair of nearest 
neighbours relative to a fixed polar axis, while the sum over j is taken over all 
n; nearest neighbours of particle i. Again (‘U) takes on the value 1 for a perfect 
triangular crystal, while it vanishes in a locally disordered structure. In the same 
spirit, we also calculated the fraction of atoms having exactly six nearest neighbours 
as determined by a Voronoi’ polygon construction, 

(13) 

The correlation of local bond-orientational order may be measured from the function: 

where the local ‘orientational density’ is defined by: 

n/ 

4. The transition 

Proceeding as described in section 2, we computed the various order parameters and 
correlations functions introduced in section 3 as functions of the size ratio A,  for 
y = 1.64 and y = 1.05. The MD results for the translational- and orientational- 
order parameters ( A v ) ~ ,  ( Ipo,l)  (where G, is the smallest reciprocal lattice vector), 
( Q )  and fs are plotted against X in figure l(a) for y = 1.64. The four order 
parameters are seen to decrease (increase in the case of (AV)’ )  only slightly as the 
size ratio is reduced from X = 1 to X = 0.78. At that stage, all four order parameters 
undergo a sharp discontinuity signalling the loss of long-range translational and bond- 
orientational order. The crucial observation is that the four discontinuities occur 
at exactly the same value of the size ratio. Their location is moreover perfectly 
reproducible as shown in figure l(b) from the data obtained for a different sample, 
corresponding to a different random choice on the initial monodisperse lattice of 
the 54 atoms to be ‘swollen’ or ‘shrunk‘. While the discontinuities occur at exactly 
the same value of X as in figure I@), the amplitudes of the jumps are somewhat 
different, particularly so for the translational-order parameters. We attribute these 
differences to the lack of sufficient self-averaging in the 10s-particle samples used in 
our simulations. 

The loss of the initial crystalline order is due to fairly small local rearrangements 
of the equilibrium positions ( v i )  of the N atoms, as illustrated in figure 2. Once 
the atoms have found new equilibrium positions differing from the initial triangular 
lattice sites, they vibrate around these positions, but remain localized, contrary to the 
case of a liquid, where they would undergo diffusion. This behaviour is typical of an 
amorphous solid, and explains why the order parameters ( I p G , [ )  and (‘U) remain non- 
zero after the transition in a small system, contrary to the case of two-dimensional 
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Figure 1. (a)  Variation of the order parameten (AT)* (8) ( I p c , l )  (7) (9) (12) and f6 
(16) with the size ratio X = C , / U ~ ~  starling from the monodispene crystal (A = 1)  at 
7 = 1.64. (b)  Same as (a), but for a different random initial assignment of 'growing' 
and 'shrinking' atoms. 

mclting, which atomic diffusion allows an efficient sampling of phase space. The 
sharpness of the transition is also illustrated by the considerable difference in the 
correlation functions y( r )  and G6( r) just before (A  = 0.781) and after (A = 0.779) 



Amorphization of a binary alloy 2381 

Figure 2. Evolution of the equilibrium position of lhe 108 atomswith time, for 7 = 1.64, 
X = 0.779. The starting point i s  the final configuration oblained in lhe crystal phase a1 

X = 0.781.  Ihe positions of the large (small) atoms arc represented by large (small) 
polygons. 

t h e  transition, as shown in figures 3 and 4. In particular, the envelope of the hond- 
orientational correlation function G6(?-),  which is still nearly constant at X = 0.781 
decreases smoothly for X c 0.779; moreover it turns out to change very little with 
A, for X < 0.778. 

It is tempting to interpret the discontinuities of the order parameters and cor- 
relation functions as the limit of metastability associated with a first-order phase 
transition between the substitutionally disordered crystal and the amorphous alloy. 
This interpretation is strengthened by the hysteresis which is clearly apparent upon 
reversing the process, by increasing the  size ratio A, starting from an initial amor- 
phous state obtained for X < 0.78. The hysteresis is illustrated in figure 5 for the 
order parameters ((pG1() and (Q). On slowly decreasing X from the crystal side, the 
discontinuities are observed to occur at X N 0.780, while on a gradually increasing X 
starting from the amorphous solid, the jumps occur when the size ratio goes through 
the value X cz 0.805, after which the order parameters retrace their values in the 
crystal phase; similar hysteresis is observed for the other order parameters. 

With the objective of seeking a thermodynamic characterization of the transition, 
we computed the equation of state, / 3P /p ,  from the virial theorem, and the integrand 
J (X)  = {apVk/aX),/N of the free energy (S), as functions of A. Both quantities 
exhibit discontinuities and hysteresis, shown in figures 6 and 7(a),  which closely par- 
allel the behaviour of the order parameters. The absolute Helmholtz free enera  was 
calculated for the monodisperse crystal ( A  = 1) and for the bi-disperse amorphous 
solid ( A  = 0.76), by the  method of Frenkel and Ladd (141. Free energies for other 
values of X were obtained in both phases by integration of J(X),  according to (5); 
the  results are plotted in figure 7(b ) ,  together with the estimates obtained within the 
harmonic phonon approximation (see the appendix for details). The two free energy 
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=/* 
Figure 3. Mean pair-distribution functions com- 
puted for -( = 1.64 in the crystal phase, at 
A = 0.781 (full curve) and in the amorphous phase 
at A = 0.779 (dashed curve). The distance r is 
measured in unils of the triangular lattice spacing 
ag; the e(.) are averaged over the three types of 
pain (l-i,l-Z and 2-2). 

11.. 

Figure 4. Bond-orientational correlation tunc- 
tion Gs(r) (14) against r l a o  for y = 1.64 . .  . . 
and X = 0.781 C q I a l  phase, upper curve), 
A = 0.779,0.778.0.777,0.775,0.774 and 
0.772 (amorphous phase). Note that the curves 
lor the last hve size ratios, A, practically coincide. 

0.2 p, , , I , ,  , , I , ,  j 
0.85 0.9 0.95 0.8 0.85 0.9 0.95 0.8 ' 

X A 
Figurc 5. Hysteresis of the order parameters, (4) ( I P o , ~ )  and (b) (Y), at y = 1.64. The 
pentagons are the MD data collected on decreasing the size ratio from the monodispene 
crystal (A = 1). while the croaes are the results obtained on increasing A, staning from 
the amorphous solid. 

curves are found to intersect at X 2 0.79, roughly half-way between the two limits 
of metastability, as one would expect for a first-order phase transition. According to 
the results shown in figure 5, the pressures of the two phases are equal for that size 
ratio, within statistical uncertainties. Since, for the potentials (I), the reduced excess 
internal energy per particle is related to the equation of state by: 

U = p U e x / N  = i [ ( p P / p )  - 11 (16) 

we conclude that thc entropies of the two phases must be practically equal (with 
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e Figure 6. Equation of slate, ,8Plp against size 

Figure 7. (a)  J ( X )  = p(aV,$/aX),  against X for 7 = 1.64. Pentagons and crosses 
have the same meaning as in figure 5 (hysteresis). (b) Excess free energy pcr panicle, 
,8Fn/N, obtained by integrating J(X)  shown in figure 7(a) (full curve). The estimates 
based on harmonic phonon theory are s h o w  as squares. The insert shou a blow-up of 
the region where free energies of the crystal and of the amorphous solid intersect. The 
dashed curves parallel to the amorphous solid branch represent the Statistical uncertainties 
of the free energy in that phase 

an estimated uncertainty A S / N k ,  = ( A U  - A F ) / N k , T  
point X N 0.79. 

and the differential of the free energy reads: 

0.1) at the transition 

The size ratio, A, plays the role of an additional intensive thermodynamic variable 

d F  = -S d T -  P d V  + E p e  dNe t Nk,TJ  dX. (17) 
0. 

Now thermodynamic stability requires that the second derivatives of F with respect 
to intensive variables (T and A in the present case) are negative. This implies that 

This is precisely the behaviour shown in figure 7(a): the system is found to 'jump' 
from one phase to the other shortly after the slope of the J - A  curve changes sign, 
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Figure 8. Order paramelen ( l p ~ l l ) ,  (W) and fs against size ratio X lor = 1.05. 

both on decreasing and increasing the size ratio. The lack of strict correspondence 
between the change in sign and the jump must be attributed to finite size effects. 

We carried out a second set of simulations for a value of the coupling parameter, 
y = 1.05, much closer to its value at the melting point of the monodisperse ( A  = 1) 
system. Since on decreasing the size ratio, A, a eutectic point should occur in the 
fluid-solid phase diagram 121, whereby freezing must take place at a higher value 
of y, it is reasonable to expect that the crystal will melt spontaneously below some 
critical A.  This is indeed the behaviour observed from the MD data around X = 0.85. 
However, as shown from the variation of the order parameters in figure 8, the tran- 
sition is less sharp than at y = 1.64, since the jumps appear to be 'smeared' over 
a certain range of size ratios. The apparent width of the transition may be traced 
back to oscillations of the system back and forth between a crystalline and a fluid 
state, contrary to the  irreversible jump from crystal to amorphous solid observed at 
7 = 1.64. This interpretation is confirmed by inspection of instantaneous config- 
urations, which exhibit fractions of six-fold coordination, fs, fluctuating between 1 
(perfect crystal) and 0.6 (with equal numbers of five-fold and seven-fold coordinated 
atom, corresponding to as many dislocations). The two types of configurations nicely 
correlate with the bimodal distribution of internal energies shown in figure 9. The 
identification of the disordered phase as a fluid phase is justified by the obsemtion 
that the a t o m  diffuse away from their initial positions, following the usual Einstein 
relation (Ir(t) - v(0)i2) - t. All our obselvations are compatible with the interprc- 
tation that the states (y = 1.05;0.8 < X < 0.8G) fall into the two-phase region; as 
usual for small systems, coexistence of the fluid and solid phases is not possible due 
to the relative importance of interfacial effects, forcing the system to make frequent 
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t '  ' ' n 

Figure 9. Distribution of excess internal energies, 
N ( f l V i ) ,  observed during the MD run at y = 
1.05. X = 0.834. 

Figure 10. Root-mean-square displacement 
(( l l~1~)) ' /~ againsl sue ratio X for 7 = 1.64. 
The pentagons are lhe MD data. while the CIOSS~S 
correspond to the harmonic phonon analysis. using 
the equilibrium positions R, of lhe a lom taken 
from the MD Nns. 

jumps between the two (metastable) bulk phases. It should be stressed that, according 
to the results of [Z], the bi-disperse crystalline alloy is probably metastable and that 
the state of lowest free energy involves coexistence of two crystal phases of different 
compositions with the melt. Due to the extremely sJow interdiffusion process, this 
state of lowest free energy is far outside the reach of the time scales covered by the 
simulations. 

5. Discussion 

On the basis of extensive MD simulations, we have shown that a discontinuous tran- 
sition, from a two-dimensional hexagonal crystal to an amorphous solid, may be 
induced by a quasi-static variation in the ratio of the atomic diameters in a random 
alloy. The discontinuous jump from the ordered to the disordered structure exhibits 
all the characteristic features of a first-order thermodynamic phase transition, includ- 
ing hysteresis. The observed order-disorder transition cannot, however, be considered 
as a genuine equilibrium phase transition, since the bi-disperse crystal and amorphous 
solid are almost certainly metastable with respect to a pair of coexisting crystal phases 
having different chemical compositions. The transition towards the state of lowest 
free energy, which would involve an extremely slow interdiffusion process in the orig- 
inal random alloy, is preempted by the amorphization obsewed in our simulations, 
involving only modest local rearrangements of atomic positions which destroy long 
range translational and bondaientational order. The transition between the crys- 
talline and amorphous alloys behaves quite differently from the melting transition 
observed at higher temperatures, which involves coexistence of the ordered crystal 
and the disordered fluid, as signalled by frequent jumps between both phases in the 
small sample simulated in the present work. 
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Despite the fact that the present transition is not a proper equilibrium phase 
transition, it is interesting to note that it does not depend on the mass ratio of the 
two species. Indeed, Monte Carlo simulations carried out in parallel, which explore 
configuration (rather than phase) space, and are hence independent of particle masses, 
yield order parameters, static correlation functions and thermodynamic properties that 
are identical, within statistical errors, to those obtained by MD simulations which map 
out trajectories in phase space, depending explicitly on the  masses. 

The extension of the present simulations to threedimewional bi-disperse solids 
should be straightfonvard and we expect that a qualitatively similar order-disorder 
transition would be observed upon varying the size ratio. The obvious question is 
whether the transition, driven by a change in atomic characteristics and hence of 
the system's Hamiltonian, is only observable in numerical 'experiments' or whether it 
has a physical counterpart in the laboratoly. A possible laboratory experiment would 
be to compress a clystalline substitutional binary alloy containing one species which 
undergoes an electronic transition and hence 'shrinks' under pressure (like Cs), and 
another atomic species which is essentially incompressible. The 'collapse' of the first 
species could then lead to an amorphization similar to the one reported hcrc. 
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Appendix 

We made systematic comparisons between the MD data and a harmonic phonon 
analysis of the crystalline and amorphous solid. Following the standard procedure, 
the total potential energy (6) is expanded to second order in the displacements 
U; = rpi - R; from their equilibrium positions Rj  = (ri). In the disordered solid, the 
latter, which are frozen, are taken from the MD averages and serve only as input to 
the harmonic calculation. Dropping the subscript X in equation (6). V, may be cast 
in the harmonic form, 

I P  I 1 " "  V , ( T ,  ... r N )  = V,(R, ... RN)+ pi Dij u j  

where summation is understood over repeated particle ( i , j )  and Cartesian ( p , ~ )  
indices. 08 is the real-space dynamical matrix, 

(A21 - ( I  - 6 ; j ) [ ~ ; j 6 , ,  t (Pjj --a;j)njjnjjI P "  

where n$ are the Cartesian components of the unit vector rjj /Irij I, while 
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The N coupled, harmonic equations of motion then read: 

where dots stand for time derivatives. As usual, periodic solutions are sought; the 
squares of the 2(N-1) harmonic angular frequencies, w,, are eigenvalues of the 
dynamical matrix D T / m .  The 2(N-1) (214 in the present case) w, were calculated 
by numerical diagonalization of the dynamical matrix 

The eigenfrequencies w, were used to calculate the classical harmonic free energy, 

shown in figure 7(6), and the mean square displacement (averaged over all particles), 

The harmonic approximation slightly underestimates the mean square displace- 
ment, which is seen to increase with decreasing size ratio (figure 10). The data 
become very noisy in the transition region, but they seem to be compatible with 
a levelling off, or even a small drop of ( 1 ~ 1 ~ ) .  which would lead to a lowering of 
the vibrational entropy in the amorphous solid, compared to the crystal. Note that 
the errors affecting the harmonic values of ([uI2) in the amorphous solid reflect the 
uncertainties of the MD estimates of the equilibrium position Ri. 
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